[Course][Udemy][Gourav Shah] DevOps to MLOps Bootcamp: Build & Deploy ML Systems End-to-End [ENG, 2025]
Git
https://github.com/mlopsbootcamp/house-price-predictor
Делаю:
2025.06.15
03. Use Case and Environment Setup
06. Launching MLflow for Experiemnt Tracking
$ mkdir -p ~/projects/courses/mlops
$ cd ~/projects/courses/mlops/house-price-predictor/
$ git clone [email protected]:webmakaka/house-price-predictor.git
$ cd house-price-predictor/deployment/mlflow/
$ docker compose up
// OK!
http://localhost:5555
08. Setting up Python Virtual Environment with UV
$ curl -LsSf https://astral.sh/uv/install.sh | sh
$ uv venv --python python3.11
$ source .venv/bin/activate
$ uv pip install -r requirements.txt
09. Working with Jupyter Notebooks
$ code .
^P
ext install ms-toolsai.jupyter
04. From Data to Models - Understanding Data Science with Feature Engineering
02. Learning Data Engineering
$ python src/data/run_processing.py --input data/raw/house_data.csv --output data/processed/cleaned_house_data.csv
06. Preparing for Model Experimentation
$ python src/features/engineer.py --input data/processed/cleaned_house_data.csv --output data/processed/featured_house_data.csv --preprocessor models/trained/preprocessor.pkl